Skip to Content
MilliporeSigma
  • Endocrine disruption of brain sexual differentiation by developmental PCB exposure.

Endocrine disruption of brain sexual differentiation by developmental PCB exposure.

Endocrinology (2010-12-31)
Sarah M Dickerson, Stephanie L Cunningham, Heather B Patisaul, Michael J Woller, Andrea C Gore
ABSTRACT

In mammals, sexual differentiation of the hypothalamus occurs during prenatal and early postnatal development due in large part to sex differences in hormones. These early organizational processes are critically important for the attainment and maintenance of adult reproductive functions. We tested the hypothesis that perinatal exposure to polychlorinated biphenyls (PCBs) that disrupt hormonal pathways would perturb reproductive maturation and the sexually dimorphic development of neuroendocrine systems in the preoptic area (POA). Pregnant Sprague-Dawley rats were injected on gestational d 16 and 18 with vehicle (dimethylsulfoxide), Aroclor 1221 (A1221, an estrogenic PCB mix), a reconstituted PCB mixture representing those highest in human body burden (PCBs 138, 153, 180), or estradiol benzoate, an estrogenic control. Male and female pups were monitored for somatic and reproductive development. In adulthood, some rats were perfused and used for immunohistochemistry of estrogen receptor α, kisspeptin, and coexpression of Fos in GnRH neurons. Other rats were used to obtain fresh-frozen POA dissections for use in a PCR-based 48-gene expression array. Pubertal onset was advanced and estrous cyclicity irregular in endocrine-disrupted females. Furthermore, sexual differentiation of female neuroendocrine systems was masculinized/defeminized. Specifically, in the adult female anteroventral periventricular nucleus, estrogen receptor α-cell numbers and kisspeptin fiber density were significantly decreased, as was GnRH-Fos coexpression. PCR analysis identified androgen receptor, IGF-I, N-methyl-d-aspartate receptor subunit NR2b, and TGFβ1 mRNAs as significantly down-regulated in endocrine-disrupted female POAs. These data suggest that developmental PCBs profoundly impair the sexual differentiation of the female hypothalamus.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
β-Estradiol 3-benzoate, ≥97%
Sigma-Aldrich
AH6809, ≥98%, crystalline solid or supercooled liquid