Skip to Content
MilliporeSigma
  • An isoform of kalirin, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction.

An isoform of kalirin, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction.

The Journal of biological chemistry (2000-02-29)
P Penzes, R C Johnson, M R Alam, V Kambampati, R E Mains, B A Eipper
ABSTRACT

Communication between membranes and the actin cytoskeleton is an important aspect of neuronal function. Regulators of actin cytoskeletal dynamics include the Rho-like small GTP-binding proteins and their exchange factors. Kalirin is a brain-specific protein, first identified through its interaction with peptidylglycine-alpha-amidating monooxygenase. In this study, we cloned rat Kalirin-7, a 7-kilobase mRNA form of Kalirin. Kalirin-7 contains nine spectrin-like repeats, a Dbl homology domain, and a pleckstrin homology domain. We found that the majority of Kalirin-7 protein is associated with synaptosomal membranes, but a fraction is cytosolic. We also detected higher molecular weight Kalirin proteins. In rat cerebral cortex, Kalirin-7 is highly enriched in the postsynaptic density fraction. In primary cultures of neurons, Kalirin-7 is detected in spine-like structures, while other forms of Kalirin are visualized in the cell soma and throughout the neurites. Kalirin-7 and its Dbl homology-pleckstrin homology domain induce formation of lamellipodia and membrane ruffling, when transiently expressed in fibroblasts, indicative of Rac1 activation. Using Rac1, the Dbl homology-pleckstrin homology domain catalyzed the in vitro exchange of bound GDP with GTP. Kalirin-7 is the first guanine-nucleotide exchange factor identified in the postsynaptic density, where it is positioned optimally to regulate signal transduction pathways connecting membrane proteins and the actin cytoskeleton.