- Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation.
Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation.
Oxysterols, mainly those oxidized at the C7 position, induce a complex mode of cell death exhibiting some characteristics of apoptosis associated with a rapid induction of lipid rich multilamellar cytoplasmic structures (myelin figures) observed in various pathologies including atherosclerosis. The aim of this study was to determine the relationships between myelin figure formation, cell death, and lipid accumulation in various cell lines (U937, THP-1, MCF-7 [caspase-3 deficient], A7R5) treated either with oxysterols (7-ketocholesterol [7KC], 7beta-hydroxycholesterol, cholesterol-5alpha,6alpha-epoxide, cholesterol-5beta,6beta-epoxide, 25-hydroxycholesterol) or cytotoxic drugs (etoposide, daunorubicin, tunicamycin, rapamycin). Cell death was assessed by the measurement of cellular permeability with propidium iodide, characterization of the morphological aspect of the nuclei with Hoechst 33342, and identification of myelin figures by transmission electron microscopy. Nile Red staining (distinguishing neutral and polar lipids) was used to identify lipid content by flow cytometry and spectral imaging microscopy. Whatever the cells considered, myelin figures were only observed with cytotoxic oxysterols (7KC, 7beta-hydroxycholesterol, cholesterol-5beta, 6beta-epoxide), and their formation was not inhibited by the broad spectrum caspase inhibitor z-VAD-fmk. When U937 cells were treated with oxysterols or cytotoxic drugs, polar lipid accumulation was mainly observed with 7KC and 7beta-hydroxycholesterol. The highest polar lipid accumulation, which was triggered by 7KC, was counteracted by z-VAD-fmk. These findings demonstrate that myelin figure formation is a caspase-independent event closely linked with the cytotoxicity of oxysterols, and they highlight a relationship between caspase activity and polar lipid accumulation.