Skip to Content
MilliporeSigma
  • AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation.

AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation.

American journal of physiology. Endocrinology and metabolism (2000-10-29)
Z P Chen, G K McConell, B J Michell, R J Snow, B J Canny, B E Kemp
ABSTRACT

AMP-activated protein kinase (AMPK) is a metabolic stress-sensing protein kinase responsible for coordinating metabolism and energy demand. In rodents, exercise accelerates fatty acid metabolism, enhances glucose uptake, and stimulates nitric oxide (NO) production in skeletal muscle. AMPK phosphorylates and inhibits acetyl-coenzyme A (CoA) carboxylase (ACC) and enhances GLUT-4 translocation. It has been reported that human skeletal muscle malonyl-CoA levels do not change in response to exercise, suggesting that other mechanisms besides inhibition of ACC may be operating to accelerate fatty acid oxidation. Here, we show that a 30-s bicycle sprint exercise increases the activity of the human skeletal muscle AMPK-alpha1 and -alpha2 isoforms approximately two- to threefold and the phosphorylation of ACC at Ser(79) (AMPK phosphorylation site) approximately 8.5-fold. Under these conditions, there is also an approximately 5.5-fold increase in phosphorylation of neuronal NO synthase-mu (nNOSmu;) at Ser(1451). These observations support the concept that inhibition of ACC is an important component in stimulating fatty acid oxidation in response to exercise and that there is coordinated regulation of nNOSmu to protect the muscle from ischemia/metabolic stress.