Skip to Content
MilliporeSigma
  • Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system.

Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system.

The Journal of comparative neurology (2003-05-15)
Philippe Sarret, Pascale Krzywkowski, Laura Segal, Morten S Nielsen, Claus M Petersen, Jean Mazella, Thomas Stroh, Alain Beaudet
ABSTRACT

The neurotensin (NT) receptor, NTS3, originally identified as the intracellular sorting protein sortilin, is a member of a recently discovered family of receptors characterized by a single transmembrane domain. The present study provides the first comprehensive description of the distribution of NTS3/sortilin mRNA and protein in adult rat brain using in situ hybridization and immunocytochemistry. Both NTS3/sortilin mRNA and immunoreactivity displayed a widespread distribution throughout the brain. High levels of NTS3/sortilin expression and immunoreactivity were found in neuronal cell bodies and dendrites of allocortical areas such as the piriform cortex and hippocampus. Regions expressing both high levels of NTS3/sortilin mRNA and protein also included several neocortical areas, the islands of Calleja, medial and lateral septal nuclei, amygdaloid nuclei, thalamic nuclei, the supraoptic nucleus, the substantia nigra, and the Purkinje cell layer of the cerebellar cortex. In the brainstem, all cranial nerve motor nuclei were strongly labeled. NTS3/sortilin mRNA and immunoreactivity were also detected over oligodendrocytes in major fiber tracts. Subcellularly, NTS3/sortilin was predominantly concentrated over intracytoplasmic membrane-bound organelles. Many of the areas exhibiting high levels of NTS3/sortilin (e.g., olfactory cortex, medial septum, and periaqueductal gray) have been documented to contain high concentrations of NT nerve cell bodies and axons, supporting the concept that NTS3/sortilin may play a role in NT sorting and/or signaling. Other areas (e.g., hippocampal CA fields, cerebellar cortex, and cranial nerve motor nuclei), however, are NT-negative, suggesting that NTS3/sortilin also exerts functions unrelated to NT signaling.