- Down-regulation of CASK in glucotoxicity-induced insulin dysfunction in pancreatic β cells.
Down-regulation of CASK in glucotoxicity-induced insulin dysfunction in pancreatic β cells.
High-glucose level exerts deleterious effects on pancreatic β cells, but the mechanisms remain unclear. Calcium/calmodulin-dependent serine protein kinase (CASK) plays a vital role in neural development and release of neurotransmitters, and probably plays a role in the anchoring of insulin on pancreatic β cell membrane. Hypoxia-inducible factor 1α (HIF1α) is involved in β-cell dysfunction. The aim of this study was to provide some basic evidence that CASK could be involved in glucotoxicity-induced insulin secretion dysfunction mediated by HIF1α in INS-1E cells. CASK overexpression plasmid, HIF1α agonist (CoCl2), and HIF1α selective inhibitor (KC7F2) were used. The results showed that chronic stimulation with high glucose could induce insulin secretion dysfunction in INS-1E β cells. Overexpression of CASK partially reversed the effects of high glucose on insulin secretion. CoCl2 reduced the expression of CASK, but KC7F2 reversed the glucotoxicity-induced CASK level reduction. These results suggested that glucotoxicity-induced insulin secretion defects in INS-1E cells could be mediated by HIF1α via the down-regulation of CASK.