Skip to Content
MilliporeSigma
  • Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action.

Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action.

Hypertension (Dallas, Tex. : 1979) (1996-09-01)
L Myatt, R B Rosenfield, A L Eis, D E Brockman, I Greer, F Lyall
ABSTRACT

The interaction of nitric oxide and superoxide produces peroxynitrite anion, a strong, long-lived oxidant with pronounced deleterious effects that may cause vascular damage. The formation and action of peroxynitrite can be detected by immunohistochemical localization of nitrotyrosine residues. We compared the presence and localization of nitrotyrosine and of the endothelial isoform of nitric oxide synthase in placental villous tissue from normotensive pregnancies (n = 5) with pregnancies complicated by preeclampsia (n = 5), intrauterine growth restriction (n = 5), and preeclampsia plus intrauterine growth restriction (n = 4), conditions characterized by increases in fetoplacental vascular resistance, fetal platelet consumption, and fetal morbidity and mortality. In all tissues, absent or faint nitrotyrosine immunostaining but prominent nitric oxide synthase immunostaining were found in syncytiotrophoblast. In tissues from normotensive pregnancies, faint nitrotyrosine immunostaining was found in vascular endothelium, and nitric oxide synthase was present in stem villous endothelium but not in the terminal villous capillary endothelium. In contrast, in preeclampsia and/or intrauterine growth restriction, moderate to intense nitrotyrosine immunostaining was seen in villous vascular endothelium, and immunostaining was also seen in surrounding vascular smooth muscle and villous stroma. The intensity of nitrotyrosine immunostaining in preeclampsia (with or without intrauterine growth restriction) was significantly greater than that of controls. Intense nitric oxide synthase staining was seen in endothelium of stem villous vessels and the small muscular arteries of the terminal villous region in these tissues and may be an adaptive response to the increased resistance. The presence of nitrotyrosine residues, particularly in the endothelium, may indicate the formation and action of peroxynitrite, resulting in vascular damage that contributes to the increased placental vascular resistance.