- Anticancer activity of newly synthesized 1,1-disubstituted cyclohexane-1-carboxamides: in vitro caspases mediated apoptosis activators in human cancer cell lines and their molecular modeling.
Anticancer activity of newly synthesized 1,1-disubstituted cyclohexane-1-carboxamides: in vitro caspases mediated apoptosis activators in human cancer cell lines and their molecular modeling.
Novel 1,1-disubstituted cyclohexane-1-carboxamides 6a-h, 7a-e, and 8a-b were designed and synthesized as apoptotic inducers. Cytotoxicity test revealed that some compounds have strong to moderate effect, while others displayed weak action against different cancer cell lines including, MCF-7, HepG2, A549, and HTC-116. A549 carcinoma cell line exhibited higher sensitivity toward all synthesized candidates especially compounds 6a and 8a which offered the lowest IC50 values 3.03 and 5.21 μM, respectively, relative to the positive control doxorubicin with IC50 value of 3.01 μM. Compared to doxorubicin treatment, compounds 6a and 8a induced caspases-3, -8, and -9 activities and G2/M growth arrest in A549 carcinoma cell line. The expression levels of p53 (tumor suppressor protein that in humans is encoded by the TP53 gene), Bax (apoptosis regulator protein in humans that is encoded by bax gene), and the Bax/Bcl-2 ratio were all higher than those in doxorubicin-treated cells (Bcl-2, B-cell lymphoma 2, encoded in humans by the Bcl-2 gene). Additionally, compounds 6a and 8a appeared to exhibit higher selectivity against MCF-10 human breast normal cell line. The synthesized congeners could be considered as potent apoptotic inducers interfering with extrinsic and intrinsic apoptotic pathways. Moreover, compound 6a was able to form complex with zinc ions as indicated by UV spectrophotometry which revealed its ability for being caspase activator. Molecular docking studies expected the interactions and binding modes of the synthesized inhibitors in the caspase-3 active site.