- The role of decorin and biglycan dermatan sulfate chain(s) in fibrosis-affected fascia.
The role of decorin and biglycan dermatan sulfate chain(s) in fibrosis-affected fascia.
Organ fibrosis is associated with excessive deposition of dermatan sulfate (DS) in the extracellular matrix (ECM) of the affected tissue. However, the significance of DS in fibrosis process is poorly known. Thus, we have analyzed both in vitro and in vivo the binding potential toward fibroblast growth factor-2, platelet-derived growth factor BB and fibronectin (FN) of DS representing glycosaminoglycan (GAG) chains of two proteoglycans decorin and biglycan derived from fascia undergoing fibrosis due to Dupuytren's disease. Moreover, to investigate the relation between DS structure and its binding properties to above ligands, we have also studied the interactions of the GAG chains from normal porcine skin decorin and biglycan. The examined interactions, especially those engaging extractable pool of both human and porcine decorin DS, are characterized by very high affinity and low capacity. Moreover, the presence of iduronate residues is not essential for the DS binding to all studied ligands and the interactions more strongly depend on the GAG sulfation pattern. All investigated interactions have biological relevance as judged from the coexistence of decorin (and biglycan) DS, both growth factors and FN in supra-molecular complexes localized in ECM of both fibrous and normal human fascia. Moreover, these complexes also include collagen type III. It seems that fascia fibrosis process when compared with physiological circumstances is associated with the preservation of at least some functions of decorin and biglycan DSs such as the regulation of growth factor bioavailability and most probably influence FN fibrillogenesis as well as coupling of various fibrilar matrix element assembly.