- WJ-39, an Aldose Reductase Inhibitor, Ameliorates Renal Lesions in Diabetic Nephropathy by Activating Nrf2 Signaling.
WJ-39, an Aldose Reductase Inhibitor, Ameliorates Renal Lesions in Diabetic Nephropathy by Activating Nrf2 Signaling.
Diabetic nephropathy (DN) is a chronic diabetic microvascular complication. Hyperactivity of the polyol pathway is involved in the pathogenesis of DN. Aldose reductase (AR), the rate-limiting enzyme of the polyol pathway, is expected to be an effective target in the treatment of DN. WJ-39 is a novel inhibitor of AR. The present study aimed at exploring the effects of WJ-39 in DN. DN was induced in rats by injecting 30 mg/kg streptozotocin (STZ). After 14 weeks, WJ-39 (10, 20, and 40 mg/kg) was intragastrically administered to the rats for 12 weeks. Treatment with WJ-39 significantly inhibited AR activation and ameliorated renal dysfunction and fibrosis in DN rats. WJ-39 reduced oxidative stress in the kidneys of DN rats by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. WJ-39 suppressed the activation of the nuclear factor-kappa B (NF-κB) pathway and the nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome to reduce the secretion of inflammatory factors. Rat mesangial cells (RMCs) were cultured under hyperglycemic conditions. WJ-39 abrogated the high glucose- (HG-) induced, excessive production of reactive oxygen species (ROS) and inflammatory factors. However, transfection with Nrf2 small interfering RNA abolished the effects of WJ-39. WJ-39 also blocked the transforming growth factor-β1/Smad pathway to reduce the production of glomerular extracellular matrix proteins, ultimately reducing fibrogenesis in DN. Our results show that WJ-39 ameliorated renal injury in DN rats, and its effects on oxidative stress and inflammation were associated with the activation of Nrf2 signaling. Thus, WJ-39 and its mechanism of amelioration of renal lesions in DN rats by reducing renal inflammation, oxidative stress, and fibrosis injury could be an effective strategy for the treatment of DN.