Skip to Content
MilliporeSigma
  • Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1.

Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1.

Journal of bacteriology (1988-03-01)
N A Strockbine, M P Jackson, L M Sung, R K Holmes, A D O'Brien
ABSTRACT

The structural genes for Shiga toxin, designated stx A and stx B, were cloned from Shigella dysenteriae type 1 3818T, and a nucleotide sequence analysis was performed. Both stx A and stx B were present on a single transcriptional unit, with stx A preceding stx B. The molecular weight calculated for the processed A subunit was 32,225, while the molecular weight of the processed B subunit was 7,691. Comparison of the nucleotide sequences for Shiga toxin and Shiga-like toxin I (SLT-I) from Escherichia coli revealed that the genes for Shiga toxin and SLT-I were greater than 99% homologous; three nucleotide changes were detected in three separate codons of the A subunits. Only one of these codon differences resulted in a change in the amino acid sequence: a threonine in Shiga toxin at position 45 of the A subunit compared with a serine in the corresponding position in SLT-I. Furthermore, Shiga toxin and SLT-I had identical signal peptides for the A and B subunits, as well as identical ribosome-binding sites, a putative promoter, and iron-regulated operator sequences. These findings indicate that Shiga and SLT-I are essentially the same toxin. Southern hybridization studies with total cellular DNA from several Shigella strains and internal toxin probes for SLT-I and its antigenic variant SLT-II showed that a single fragment in S. dysenteriae type 1 hybridized strongly with the internal SLT-I probe. Fragments with weaker homology to the SLT-I probe were detected in S. flexneri type 2a but no other shigellae. No homology between the Shiga-like toxin II (SLT-II) probe and any of the Shigella DNAs was detected. Whereas SLT-I and SLT-II are phage encoded, no phage could be induced from S. dysenteriae type 1 or other Shigella spp. tested. These results suggest that the Shiga (SLT-I) toxin genes responsible for high toxin production are present in a single copy in S. dysenteriae type 1 but not in other shigellae. The findings further suggest that SLT-II genes are absent in shigellae, as are toxin-converting phages.