- Determination of Endocrine Disrupting Chemicals in Water and Wastewater Samples by Liquid Chromatography-Negative Ion Electrospray Ionization-Tandem Mass Spectrometry.
Determination of Endocrine Disrupting Chemicals in Water and Wastewater Samples by Liquid Chromatography-Negative Ion Electrospray Ionization-Tandem Mass Spectrometry.
A liquid chromatography-negative ion electrospray ionization-tandem mass spectrometry method was developed for the simultaneous analysis of bisphenol A, 4-octylphenol, 4-nonylphenol, diethylstilbestrol, 17β-estradiol, estriol, estrone, 17α-ethinylestradiol, prednisone, and prednisolone. This method used solid-phase extraction with an elution solvent of acetonitrile to improve the stability of the analytes. To maintain the stability of analytes analyses were completed within five days. The recoveries ranged from 84 to 112% and the relative standard deviation of analysis of duplicate samples was <10%. The limits of quantitation were 1-10 ng/L. Surface water and wastewater were obtained from five wastewater treatment plants in Saskatchewan. Matrix effects were moderate to severe. Using standard addition calibration, all analytes except diethylstilbestrol and 17α-ethinyl estradiol were detected. There was a low frequency of detection of the target analytes in upstream and downstream water, indicating good removal efficiency during the wastewater treatment process. Bisphenol A and 4-nonylphenol were the only analytes detected downstream. Bisphenol A was the most frequently detected in raw wastewater (133 to 403 ng/L). Estriol was detected more often in raw wastewater than estrone or 17β-estradiol. This is the first Canadian study with the detection of prednisone and prednisolone with concentrations at 198-350 ng/L in raw wastewater at 60% of the wastewater treatment plants.