- Functional expression of the interleukin-11 receptor alpha-chain and evidence of antiapoptotic effects in human colonic epithelial cells.
Functional expression of the interleukin-11 receptor alpha-chain and evidence of antiapoptotic effects in human colonic epithelial cells.
A tissue-protective effect of interleukin-11 (IL-11) for the intestinal mucosa has been postulated from animal models of inflammatory bowel disease (IBD). Despite the fact that the clinical usefulness of the anti-inflammatory effects of this cytokine is presently investigated in patients with IBD, there are no data available regarding the target cells of IL-11 action and the mechanisms of tissue protection within the human colonic mucosa. IL-11 responsiveness is restricted to cells that express the interleukin-11 receptor alpha-chain (IL-11Ralpha) and an additional signal-transducing subunit (gp130). In this study, we identified the target cells for IL-11 within the human colon with a new IL-11Ralpha monoclonal antibody and investigated the functional expression of the receptor and downstream effects of IL-11-induced signaling. Immunohistochemistry revealed expression of the IL-11Ralpha selectively on colonic epithelial cells. HT-29 and colonic epithelial cells (CEC) constitutively expressed IL-11Ralpha mRNA and protein. Co-expression of the signal-transducing subunit gp130 was also demonstrated. IL-11 induced signaling through triggering activation of the Jak-STAT pathway without inducing anti-inflammatory or proliferative effects in colonic epithelial cells. However, IL-11 stimulation resulted in a dose-dependent tyrosine phosphorylation of Akt, a decreased activation of caspase-9, and a reduced induction of apoptosis in cultured CEC. In HLA-B27 transgenic rats treated with IL-11, a reduction of apoptotic cell numbers was found. This study demonstrates functional expression of the IL-11Ralpha restricted on CEC within the human colonic mucosa. IL-11 induced signaling through triggering activation of the Jak-STAT pathway, without inducing anti-inflammatory or proliferative effects. The beneficial effects of IL-11 therapy are likely to be mediated by CEC via activation of the Akt-survival pathway, mediating antiapoptotic effects to support mucosal integrity.