Skip to Content
MilliporeSigma
  • Mechanisms of adipose tissue extracellular matrix alterations in an in vitro model of adipocytes hypoxia and aging.

Mechanisms of adipose tissue extracellular matrix alterations in an in vitro model of adipocytes hypoxia and aging.

Mechanisms of ageing and development (2020-10-06)
E Zoico, G Policastro, V Rizzatti, N Nori, E Darra, A P Rossi, F Fantin, M Zamboni
ABSTRACT

Fibrosis has been considered as a hallmark of dysfunctional adipose tissue (AT), however the role and mechanisms of fibrosis in the age related AT dysfunction are not yet well characterized. The aim of the study was to investigate the mechanisms of extracellular matrix (ECM) alterations and the role of caveolins, using an in vitro model of adipocyte aging and hypoxia. Hypoxic adipocytes, but also aged adipocytes, were characterized by a significant increase in gene expression of pro-inflammatory cytokines and ECM components. Immunofluorescence analysis confirmed an increase in collagen VI-A3 in hypoxic and also in aged adipocytes. However aged adipocytes were characterized by only a slight increase in HIF1α immunofluorescence and by a more relevant increase in senescence compared to hypoxic and mature adipocytes, with an increase in p-53 protein and a decrease in SIRT 1 protein. Immunofluorescence and western blot analysis revealed a significant decrease in caveolin-1 expression in hypoxic adipocytes and even more in aged adipocytes. In conclusions, aging adipocytes are associated to alteration of ECM and fibrosis, by modulation of the caveolins through complex mechanisms where inflammation, hypoxia and cellular senescence are coexisting.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Protease and Phosphatase Inhibitor Cocktail