- The nitric oxide donor NOC12 protects cultured astrocytes against apoptosis via a cGMP-dependent mechanism.
The nitric oxide donor NOC12 protects cultured astrocytes against apoptosis via a cGMP-dependent mechanism.
We examined the effect of 3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC12), a nitric oxide (NO) donor, on apoptosis in cultured astrocytes. Reperfusion after hydrogen peroxide (H2O2) exposure caused a decrease in cell viability, loss of mitochondrial membrane potential, caspase-3 activation, DNA ladder formation, and nuclear condensation. NOC12 at 10-100 microM significantly attenuated these apoptotic changes, while the NO donor at 1 mM caused cell injury and exacerbated the H202-induced cell injury. NOC12 increased intracellular cGMP levels in a dose dependent manner with the maximal effect at 100 microM. The protective effect of NOC12 was mimicked by the NO-independent guanylate cyclase activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole, and was attenuated by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and the cGMP-dependent protein kinase inhibitor KT5823. ODQ and KT5823 did not block but rather exacerbated the cytotoxic effect of NOC12 at 1 mM. These findings demonstrate that lower concentrations of NOC12 inhibit the H2O2-induced apoptosis of astrocytes in a cGMP-dependent way, but higher concentrations of NOC12 show a toxic effect on astrocytes in a cGMP-independent way.