- A double-functionalized cyclen with carbamoyl and dansyl groups (cyclen = 1,4,7,10-tetraazacyclododecane): a selective fluorescent probe for Y(3+) and La(3+).
A double-functionalized cyclen with carbamoyl and dansyl groups (cyclen = 1,4,7,10-tetraazacyclododecane): a selective fluorescent probe for Y(3+) and La(3+).
A cyclen (=1,4,7,10-tetraazacyclododecane) doubly functionalized with three carbamoylmethyl groups and one dansylaminoethyl (dansyl = 2-(5-(dimethylamino)-1-naphthalenesulfonyl) group (L(2) = 1-(2-(5-(dimethylamino)-1-naphthalenesulfonylamido)ethyl)-4,7,10-tris(carbamoylmethyl)-cyclen) was synthesized and characterized. Potentiometrtic pH titration and UV spectrophotometric titration of L(2) served to determine deprotonation of the pendant dansylamide (L(2) --> H(-1)L(2)) with a pK(a) value of 10.6, while the fluorometric titration disclosed a pK(a) value of 8.8 +/- 0.2, which was assigned to the dansyl deprotonation in the excited state. The 1:1 M(3+)-H(-1)L(2) complexation constants (log K(app) = 6.0 for Y(3+) and 5.2 for La(3+), where K(app)(M-H(-1)L(2)) = [M(3+)-H(-1)L(2)]/[M(3+)](free)[L(2)](free) (M(-1)) at pH 7.4) were determined by potentiometric pH titration and UV and fluorescence spectrophotometric titrations (excitation at 335 nm and emission at 520 nm) in aqueous solution (with I = 0.1 (NaNO(3))) and 25 degrees C. The X-ray structure analysis of the Y(3+)-H(-1)L complex showed nine-coordinated Y(3+) with four nitrogens of cyclen, three carbamoyl oxygens, and the deprotonated nitrogen and a sulfonyl oxygen of the dansylamide. The crystal data are as follow: formula C(28)H(49)N(11)O(13.5)SY (Y(3+)-H(-1)L(2) x 2(NO(3)(-)) x 2.5H(2)O), M(r) = 876.73, monoclinic, space group P2(1)/n (No. 14), a = 18.912(3) A, b = 17.042(3) A, c = 24.318(4) A, beta = 95.99(1) degrees, V = 7794(2) A(3), Z = 8, R1 = 0.099. Upon M(3+)-H(-1)L(2) complexation, the dansyl fluorescence greatly increased (8.6 and 3.8 times for Y(3+) and La(3+), respectively) in aqueous solution at pH 7.4. Other lanthanide ions also yielded Ln(3+)-H(-1)L(2) complexes with similar K(app) values, although all the dansyl fluorescences were weakly quenched. On the other hand, zinc(II) formed only a 1:1 Zn(2+)-L(2) complex at neutral pH with negligible fluorescence change. The X-ray crystal structure of the Zn(2+)-L(2) complex confirmed the pendant dansylamide being noncoordinating. The crystal data are as follow: formula C(28)H(51)N(11)O(14)SZn (Zn(2+)-L(2) x 2(NO(3)(-)) x 3H(2)O), M(r) = 863.22, monoclinic, space group C2/n (No. 15), a = 35.361(1) A, b = 13.7298(5) A, c = 18.5998(6) A, beta = 119.073(2) degrees, V = 7892.3(5) A(3), Z = 8, R1 = 0.084. Other divalent metal ions did not interact with L(2) at all (e.g., Mg(2+) and Ca(2+)) or interacted with L(2) with the dansyl fluorescence quenched (e.g., Cu(2+)).