Skip to Content
MilliporeSigma
  • Theoretical study of N-dealkylation of N-cyclopropyl-N-methylaniline catalyzed by cytochrome P450: insight into the origin of the regioselectivity.

Theoretical study of N-dealkylation of N-cyclopropyl-N-methylaniline catalyzed by cytochrome P450: insight into the origin of the regioselectivity.

Dalton transactions (Cambridge, England : 2003) (2008-12-18)
Dongmei Li, Yong Wang, Chuanlu Yang, Keli Han
ABSTRACT

The mechanism of N-dealkylation of N-cyclopropyl-N-methylaniline () catalyzed by cytochrome P450 (P450) was investigated using density functional theory. This reaction involves two steps. The first one is a Calpha-H hydroxylation on the N-substituent to form a carbinolaniline complex, and the second is a decomposition of the carbinolaniline to yield cyclopropanone (or formaldehyde) and N-methylaniline (or N-cyclopropylaniline). Our calculations demonstrate that the first step proceeds in a spin-selective mechanism (SSM), mostly on the low-spin (LS) doublet state. The rate-limiting Calpha-H activation is an isotope-sensitive hydrogen atom transfer (HAT) step. The environmental effect switches the regioselectivity of this reaction from a competition between N-decyclopropylation and N-demethylation to a clear preference for N-demethylation. This preference is consistent with former experimental studies. However, it is not in accord with the normal DeltaE-BDE correlation since the BDE of Calpha-H on the methyl group is higher than that on the cyclopropyl group. Insight into the origin of the preference for N-demethylation reveals that tertiary amine is different from normal hydrocarbons, possessing a unique piPh-piC-N conjugated system. The electron delocalization effect of the piPh-piC-N conjugated system in makes the transition state pose a polar character, and the bulk polarity and hydrogen bonding capability of the protein pocket can exert a remarkable effect on the regioselectivity of N-dealkylation of . Decomposition of carbinolaniline is a water-assisted proton-transfer process in the nonenzymatic environment. The ring-intact cyclopropanone formed in the reaction sheds some light on the inability of to inactivate P450 during its N-decyclopropylation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
N-Methylaniline, 98%
Sigma-Aldrich
N-Methylaniline, ≥99%
Supelco
N-Methylaniline, analytical standard
Sigma-Aldrich
N-Methylaniline, purum, ≥98.0% (GC)