- Expression and characterization of an extremely thermostable β-glycosidase (mannosidase) from the hyperthermophilic archaeon Pyrococcus furiosus DSM3638.
Expression and characterization of an extremely thermostable β-glycosidase (mannosidase) from the hyperthermophilic archaeon Pyrococcus furiosus DSM3638.
Genomic analysis of the hyperthermophilic archaeon Pyrococcus furiosus revealed the presence of an open reading frame (ORF PF0356) similar to the enzymes in glycoside hydrolase family 1. This β-glycosidase, designated PFTG (P. furiosus thermostable glycosidase), was cloned and expressed in Escherichia coli. The expressed enzyme was purified by heat treatment and Ni-NTA affinity chromatography. The gene was composed of 1,452 bp encoding 483 amino acids for a protein with a predicted molecular mass of 56,326 Da. The temperature and pH optima were 100°C and 5.0 in sodium citrate buffer, respectively. The substrate specificity of PFTG suggests that it possesses characteristics of both β-galactosidase and β-mannosidase activities. However, through kinetic studies by ITC (Isothermal Titration Colorimetry) which is very sensitive method for enzyme kinetics, PF0356 enzyme revealed the highest catalytic efficiency toward p-nitrophenyl-β-d-mannopyranoside (3.02 k(cat)/K(m)) and mannobiose (4.32 k(cat)/K(m)). The enzyme showed transglycosylation and transgalactosylation activities toward cellobiose, lactose and mannooligosaccharides that could produce GOS (galactooligosaccharides) and MOS (maltooligosaccharides). This novel hyperthermostable β-glycosidase may be useful for food and pharmaceutical applications.