- 12-hydroxy-1-azaperylene-limiting case of the ESIPT system: enol-keto tautomerization in S0 and S1 states.
12-hydroxy-1-azaperylene-limiting case of the ESIPT system: enol-keto tautomerization in S0 and S1 states.
Absorption, fluorescence, and fluorescence excitation spectra of 12-hydroxy-1-azaperylene (HAP) and 1-azaperylene were studied in n-alkane matrices at 5 K. Two stable tautomers of HAP, each of them in n-nonane embedded in two sites, were identified and attributed to the enol and keto forms. Theoretical calculations of the energy and vibrational structure of the spectra suggest that tautomer A, with the (0, 0) transition energy at 18,980 ± 10 cm(-1) (and 19,060 ± 10 cm(-1) in the high energy site), should be identified as the keto form, whereas tautomer B, with the (0, 0) energy at 19,200 ± 20 cm(-1) (19,290 ± 20 cm(-1)), as the enol form. Observation of absorption and fluorescence of both tautomeric forms and lack of large Stokes shift of fluorescence of the keto form classify HAP as the limiting case of the excited-state intramolecular proton transfer system.