- DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions.
DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions.
In this paper, we describe a simple one-pot method, employing l-3,4-dihydroxyphenylalanine (L-DOPA) as a reducing/capping reagent, for the synthesis of fluorescent gold nanoclusters (AuNCs). Within a short reaction time of 15 min (excluding the time required for purification), this strategy allows the fabrication of homogeneous AuNCs having the capability to sense ferric ions (Fe(3+)). The as-prepared AuNCs exhibited a fluorescence emission at 525 nm and a quantum yield of 1.7%. On the basis of an aggregation-induced fluorescence quenching mechanism, these fluorescent AuNCs offer acceptable sensitivity, high selectivity, and a limit of detection of 3.5 μM for the determination of Fe(3+) ions, which is lower than the maximum level (0.3 mg L(-1), equivalent to 5.4 μM) of Fe(3+) permitted in drinking water by the U.S. Environmental Protection Agency.