- Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer.
Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer.
Multidrug resistance (MDR) is one of the major reasons for the failure of cancer chemotherapy. A newly reported liposome carrier, propylene glycol liposomes (EPI-PG-liposomes) were made to load epirubicin (EPI) which enhanced EPI absorption in MDR tumor cells to overcome the drug resistance. MDA-MB 435 and their mutant resistant (MDA-MB 435/ADR) cells were used to examine the cellular uptake and P-gp function in vitro for EPI-PG-liposomes by fluorescence microscopy and FCM, respectively. Mammary tumor model was also established to investigate the tumor growth inhibition and pharmacodynamics of EPI-PG-liposomes in vivo. Morphology evaluation showed that EPI-PG-liposomes had a homogeneous spherical shape with an average diameter of 182 nm. Based on cell viability assay, fluorescent microscopy examination, and EPI uptake assay, EPI-PG-liposomes exhibited an effective growth inhibition not only in MDA-MB-435 cells, but also in MDA-MB 435/ADR cells. EPI-PG-liposomes have high permeability not only on tumor cell membrane, but also on cell nucleus membrane. P-gp function assay showed that the anticancer action of EPI-PG-liposomes was not related to P-gp efflux pump, suggesting that PG-liposomes would not affect the normal physiological functions of membrane proteins. EPI-PG-liposomes also showed a better antitumor efficacy compared to EPI solution alone. With high entrapment efficiency, spherical morphology and effective inhibition on MDR cancer cells, EPI-PG-liposomes may represent a better chemotherapeutic vectors for cancer targeted therapy.