- Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales.
Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales.
The recent emergence of micro-devices for vaccine delivery into upper layers of the skin holds potential for increased immune responses using physical means to target abundant immune cell populations. A challenge in doing this has been a limited understanding of the skin elastic properties at the micro scale (i.e. on the order of a cell diameter; ~10 μm). Here, we quantify skin's elastic properties at a micro-scale by fabricating customised probes of scales from sub- to super-cellular (0.5 μm-20 μm radius). We then probe full thickness skin; first with force-relaxation experiments and subsequently by elastic indentations. We find that skin's viscoelastic response is scale-independent: consistently a ~40% decrease in normalised force over the first second, followed by further 10% reduction over 10 s. Using Prony series and Hertzian contact analyses, we determined the strain-rate independent elastic moduli of the skin. A high scale dependency was found: the smallest probe encountered the highest elastic modulus (~30 MPa), whereas the 20 μm radius probe was lowest (below 1 MPa). We propose that this may be a result of the load distribution in skin facilitated by the hard corneocytes in the outermost skin layers, and softer living cell layers below.