- Dependence of efficiencies in GaN-based vertical blue light-emitting diodes on the thickness and doping concentration of the n-GaN layer.
Dependence of efficiencies in GaN-based vertical blue light-emitting diodes on the thickness and doping concentration of the n-GaN layer.
We investigate the dependence of various efficiencies in GaN-based vertical blue light-emitting diode (LED) structures on the thickness and doping concentration of the n-GaN layer by using numerical simulations. The electrical efficiency (EE) and the internal quantum efficiency (IQE) are found to increase as the thickness or doping concentration increases due to the improvement of current spreading. On the contrary, the light extraction efficiency (LEE) decreases with increasing doping concentration or n-GaN thickness by the free-carrier absorption. By combining the results of EE, IQE, and LEE, wall-plug efficiency (WPE) of the vertical LED is calculated, and the optimum thickness and doping concentration of the n-GaN layer is found for obtaining the maximum WPE.