- Slow-binding and competitive inhibition of 8-amino-7-oxopelargonate synthase, a pyridoxal-5'-phosphate-dependent enzyme involved in biotin biosynthesis, by substrate and intermediate analogs. Kinetic and binding studies.
Slow-binding and competitive inhibition of 8-amino-7-oxopelargonate synthase, a pyridoxal-5'-phosphate-dependent enzyme involved in biotin biosynthesis, by substrate and intermediate analogs. Kinetic and binding studies.
8-Amino-7-oxopelargonate synthase catalyzes the first committed step of biotin biosynthesis in micro-organisms and plants. Because inhibitors of this pathway might lead to antibacterials or herbicides, we have undertaken an inhibition study on 8-amino-7-oxopelargonate synthase using six different compounds. d-Alanine, the enantiomer of the substrate of this pyridoxal-5'-phosphate-dependent enzyme was found to be a competitive inhibitor with respect to l-alanine with a Ki of 0.59 mm. The fact that this inhibition constant was four times lower than the Km for l-alanine was interpreted as the consequence of the inversion-retention stereochemistry of the catalyzed reaction. Schiff base formation between l or d-alanine and pyridoxal-5'-phosphate, in the active site of the enzyme, was studied using ultraviolet/visible spectroscopy. It was found that l and d-alanine form an external aldimine with equilibrium constants K = 4.1 mm and K = 37.8 mm, respectively. However, the equilibrium constant for d-alanine aldimine formation dramatically decreased to 1.3 mm in the presence of saturating concentration of pimeloyl-CoA, the second substrate. This result strongly suggests that the binding of pimeloyl-CoA induces a conformational change in the active site, and we propose that this new topology is complementary to d-alanine and to the putative reaction intermediate since they both have the same configuration. (+/-)-8-Amino-7-oxo-8-phosphonononaoic acid (1), the phosphonate derivative of the intermediate formed during the reaction, was our most potent inhibitor with a Ki of 7 microm. This compound behaved as a reversible slow-binding inhibitor, competitive with respect to l-alanine. Kinetic investigation showed that this slow process was best described by a one-step mechanism (mechanism A) with the following rate constants: k1 = 0.27 x 103 m-1.s-1, k2 = 1.8 s-1 and half-life for dissociation t1/2 = 6.3 min. The binding of compound 1 to the enzyme was also studied using ultraviolet/visible spectroscopy, and the data were consistent with the kinetic data (K = 4.2 microm). Among the other compounds tested, two potential transition state analogs, 4-carboxybutyl(1-amino-1-carboxyethyl)phosphonate (4) and 2-amino-3-hydroxy-2-methylnonadioic acid (5) were found to be competitive inhibitors with respect to l-alanine with Ki of 68 microm and 80 microm, respectively.