Skip to Content
MilliporeSigma
  • Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells.

Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells.

Colloids and surfaces. B, Biointerfaces (2012-09-27)
Sreemanti Das, Jayeeta Das, Asmita Samadder, Soumya Sundar Bhattacharyya, Durba Das, Anisur Rahman Khuda-Bukhsh
ABSTRACT

The capability of crude ethanolic extracts of certain medicinal plants like Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis used as homeopathic mother tinctures in precipitating silver nanoparticles from aqueous solution of silver nitrate has been explored. Nanoparticles thus precipitated were characterized by spectroscopic, dynamic light scattering, X-ray diffraction, atomic force and transmission electron microscopic analyses. The drug-DNA interactions of silver nanoparticles were analyzed from data of circular dichroism spectroscopy and melting temperature profiles using calf thymus DNA (CT-DNA) as target. Biological activities of silver nanoparticles of different origin were then tested to evaluate their effective anti-proliferative and anti-bacterial properties, if any, by exposing them to A375 skin melanoma cells and to Escherichia coli C, respectively. Silver nanoparticles showed differences in their level of anti-cancer and anti-bacterial potentials. The nanoparticles of different origin interacted differently with CT-DNA, showing differences in their binding capacities. Particle size differences of the nanoparticles could be attributed for causing differences in their cellular entry and biological action. The ethanolic extracts of these plants had not been tested earlier for their possible efficacies in synthesizing nanoparticles from silver nitrate solution that had beneficial biological action, opening up a possibility of having therapeutic values in the management of diseases including cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Silver nitrate on silica gel, extent of labeling: ~10 wt. % loading, +230 mesh
Sigma-Aldrich
Silver standard solution, suitable for atomic absorption spectrometry, 1 mg/mL Ag, 1000 ppm Ag
Sigma-Aldrich
Silver nitrate, ReagentPlus®, ≥99.0% (titration)
Sigma-Aldrich
Silver nitrate, meets analytical specification of Ph. Eur., BP, USP, 99.8-100.5%
Sigma-Aldrich
Silver nitrate, ACS reagent, ≥99.0%
Sigma-Aldrich
Silver nitrate, puriss. p.a., ≥99.5% (AT)
Sigma-Aldrich
Silver nitrate, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Silver nitrate solution, 2.5 % (w/v) AgNO3 in H2O
Sigma-Aldrich
Silver nitrate, BioXtra, >99% (titration)
Sigma-Aldrich
Silver nitrate, BioReagent, suitable for plant cell culture, >99% (titration)
Sigma-Aldrich
Silver nitrate, tested according to Ph. Eur.
Sigma-Aldrich
Silver nitrate, 99.9999% trace metals basis
Sigma-Aldrich
Silver nitrate solution, 0.0282 M
Sigma-Aldrich
Silver nitrate solution, 0.05 M