- Spectroscopic, magnetic and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 3-acetylcoumarin-isonicotinoylhydrazone and their antimicrobial and anti-tubercular activity evaluation.
Spectroscopic, magnetic and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 3-acetylcoumarin-isonicotinoylhydrazone and their antimicrobial and anti-tubercular activity evaluation.
Co(II), Ni(II), Cu(II) and Zn(II) complexes with a new heterocyclic Schiff base derived by the condensation of isonicotinoylhydrazide and 3-acetylcoumarin have been synthesized. ¹H, ¹³C and 2D HETCOR NMR analyses confirm the formation of title compound and existence of the same in two isomeric forms. The metal complexes were characterized on the basis of various spectroscopic techniques like electronic, EPR, IR, ¹H and ¹³C NMR studies, elemental analysis, magnetic properties and thermogravimetric analysis, and also by the aid of molar conductivity measurements. It is found that the Schiff base behaves as a monobasic tridentate ligand coordinating in the imidol form with 1:1 metal to ligand stoichiometry. Trigonal bipyramidal geometry has been assigned for Ni(II) and Cu(II) complexes, while tetrahedral for Co(II) and Zn(II) complexes. The compounds were subjected to antimicrobial and anti-tubercular activity screening using serial broth dilution method and Minimum Inhibitory Concentration (MIC) is determined. Zn(II) complex has shown significant antifungal activity with an MIC of 6.25 μg/mL while Cu(II) complex is noticeable for antibacterial activity at the same concentration. Anti-TB activity of the ligand has enhanced on complexation with Co(II) and Ni(II) ions.