- Electrospinning of polystyrene/dicyanopyrazine-linked porphyrin nanofibers.
Electrospinning of polystyrene/dicyanopyrazine-linked porphyrin nanofibers.
We have fabricated fluorescing polystyrene/dicyanopyrazine-linked porphyrin (PS/4-TDCPP) nanofibers using the electrospinning technique. UV-vis spectroscopy shows a strong Soret band and two relatively weak Q bands from the PS/4-TDCPP films and fibers, and reveals that the 4-TDCPP molecules are homogeneously dispersed in the films and fibers. Scanning electron microscopy (SEM) reveals the effect of solvent and collecting distance on the morphology of the electro-spun PS/4-TDCPP fibers. Fibers spun from a 50% dimethlyformamide (DMF), 50% methylethylketone (MEK) solution have ultra-fine structures with an average diameter of 300 nm. In the case of fibers from pure DMF and DMF:MEK (1:3) solutions, beads are formed along the length of the fibers. Variation of the collecting distance from 20 to 30 cm does not induce significant differences in the morphology of the electro-spun PS/4-TDCPP fibers. However, at a collecting distance of 15 cm, many beads are formed along the fibers. Acid-sensing capability of the PS/4-TDCPP fibers is demonstrated by fluorescence microscopy.