- Spectroscopic (FTIR and FT Raman) analysis and vibrational study on 2,3-dimethyl naphthalene using ab-initio HF and DFT calculations.
Spectroscopic (FTIR and FT Raman) analysis and vibrational study on 2,3-dimethyl naphthalene using ab-initio HF and DFT calculations.
A combined experimental and theoretical study on molecular and vibrational structure of 2,3-dimethyl naphthalene (2,3-DMN) has been undertaken in the present work. The FTIR and FT Raman spectra of 2,3-DMN were recorded in the region 4000-100 cm(-1). The optimized geometries were calculated by HF and DFT (B3LYP) methods with 6-31++G (d, p), 6-311G (d, p) and 6-311++G (d, p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman activities of the 2,3-DMN were evaluated with these methods. After scaling the computational wave numbers are in very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of 2,3-DMN is presented. The effects of substitution of methyl group on the molecule have also been discussed.