Skip to Content
MilliporeSigma
  • Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max).

Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max).

Journal of plant physiology (2011-04-15)
Gisele Adriana Bubna, Rogério Barbosa Lima, Daniele Yara Lucca Zanardo, Wanderley Dantas Dos Santos, Maria de Lourdes Lucio Ferrarese, Osvaldo Ferrarese-Filho
ABSTRACT

The allelopathic effect of caffeic acid was tested on root growth, phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities, hydrogen peroxide (H(2)O(2)) accumulation, lignin content and monomeric composition of soybean (Glycine max) roots. We found that exogenously applied caffeic acid inhibited root growth, decreased the PAL activity and H(2)O(2) content and increased the soluble and cell wall-bound POD activities. The p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monomers and total lignin (H+G+S) increased in the caffeic acid-exposed roots. When applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), caffeic acid equalized the inhibitory effect of PIP, whereas the application of methylene dioxocinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL) plus caffeic acid decreased lignin production. These results indicate that exogenously applied caffeic acid can be channeled into the phenylpropanoid pathway via the 4CL reaction, resulting in an increase of lignin monomers that solidify the cell wall and inhibit root growth.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Piperonylic acid, 99%