- Reusability of surfactant-coated Candida rugosa lipase immobilized in gelatin microemulsion-based organogels for ethyl isovalerate synthesis.
Reusability of surfactant-coated Candida rugosa lipase immobilized in gelatin microemulsion-based organogels for ethyl isovalerate synthesis.
In our previous study, a surfactant-coated Candida rugosa lipase immobilized in microemulsion-based organogels was exploited for the synthesis of ethyl isovalerate. In the present study, we are focusing on the effective reuse of lipase immobilized in microemulsion-based organogels (MBGs) in terms of retainment of the catalytic activity. As water is one of the co-products in esterification reactions, the removal of water becomes a priority to allow the reaction to work in the forward direction and to prevent back hydrolysis. Taking this fact into consideration, the lipase-containing microemulsion-based organogels were given pretreatment and/or several intermittent treatments with dry reverse micellar solution of AOT in organic solvent during repeated cycles of ester synthesis. The pretreated MBGs with dry reverse micellar solution exhibited lower water content and higher initial rates of esterification in comparison with untreated freshly prepared MBGs. The esterification efficiency of untreated MBGs started decreasing after 5 cycles of reuse and was almost completely lost by the end of the 8th cycle. In contrast, pretreated MBGs exhibited a gradual decrease in esterification efficiency after 5 cycles and retained about 80% of the initial activity at the end of the 8th cycle. The intermittent treatment of MBGs after every 3 cycles resulted in enhanced reusability of immobilized lipase for up to 9 cycles without significant loss in esterification activity, after which it resulted in a slow decrease in activity with about 27% lower activity at the end of the 12th cycle. Furthermore, the treatment conditions such as concentration of AOT in liquid dessicant and time of treatment were optimized with respect to our system. The granulated MBGs proved to be better in terms of initial esterification rates (1.2- fold) as compared with the pelleted MBGs.