- 2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue.
2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue.
Gestational diabetes mellitus (GDM) is a significant risk factor for the type 2 diabetes epidemic in many populations. Maternal adipose tissue plays a central role in the pathophysiology of GDM. Thus, the aim of this study was to determine the effect of GDM on the proteome of adipose tissue. Omental adipose tissue was obtained at the time of term Caesarean section from women with normal glucose tolerance (NGT) or GDM. 2D-difference gel electrophoresis (DIGE), followed by mass spectrometry, was used to identify protein spots (n = 6 patients per group). Western blotting was used for confirmation of six of the spot differences (n = 6 patients per group). We found 14 proteins that were differentially expressed between NGT and GDM adipose tissue (≥ 1.4-fold, P < 0.05). GDM was associated with an up-regulation of four proteins: collagen alpha-2(VI) chain (CO6A2 (COL6A2)), fibrinogen beta chain (FIBB (FGB)), lumican (LUM) and S100A9. On the other hand, a total of ten proteins were found to be down-regulated in adipose tissue from GDM women. These were alpha-1-antitrypsin (AIAT (SERPINA 1)), annexin A5 (ANXA5), fatty acid-binding protein, adipocyte (FABP4), glutathione S-transferase P (GSTP (GSTP1)), heat-shock protein beta-1 (HSP27 (HSPB1)), lactate dehydrogenase B chain (LDHB), perilipin-1 (PLIN1), peroxiredoxin-6 (PRX6 (PRDX6)), selenium-binding protein 1 (SBP1) and vinculin (VINC (VCL)). In conclusion, proteomic analysis of omental fat reveals differential expression of several proteins in GDM patients and NGT pregnant women. This study revealed differences in expression of proteins that are involved in inflammation, lipid and glucose metabolism and oxidative stress and added further evidence to support the role of visceral adiposity in the pathogenesis of GDM.