Skip to Content
MilliporeSigma

The day/night proteome in the murine heart.

American journal of physiology. Regulatory, integrative and comparative physiology (2014-05-03)
Peter Podobed, W Glen Pyle, Suzanne Ackloo, Faisal J Alibhai, Elena V Tsimakouridze, William F Ratcliffe, Allison Mackay, Jeremy Simpson, David C Wright, Gordon M Kirby, Martin E Young, Tami A Martino
ABSTRACT

Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function.

MATERIALS
Product Number
Brand
Product Description

Ondansetron impurity E, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Imidazole, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
SAFC
Sodium chloride solution, 5 M
Imidazole, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Anti-Per2 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%, Redi-Dri, free-flowing
Supelco
Imidazole, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Imidazole, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration), free-flowing, Redi-Dri
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Calcium chloride
Supelco
Calcium ion solution for ISE, 0.1 M Ca, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Calcium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Imidazole, BioUltra, ≥99.5% (GC)