Skip to Content
MilliporeSigma
  • Spatial control of cell gene expression by siRNA gradients in biodegradable hydrogels.

Spatial control of cell gene expression by siRNA gradients in biodegradable hydrogels.

Advanced healthcare materials (2014-12-23)
Michael C Hill, Minh K Nguyen, Oju Jeon, Eben Alsberg
ABSTRACT

The extracellular environment exposes cells to numerous biochemical and physical signals that regulate their behavior. Strategies for generating continuous gradients of signals in biomaterials may allow for spatial control and patterning of cell behavior, and ultimately aid in the engineering of complex tissues. Short interfering RNA (siRNA) can regulate gene expression by silencing specific mRNA molecules post-transcriptionally, which may be valuable when presented in a continuous gradient for regenerative or therapeutic applications. Here, a biodegradable hydrogel system containing a gradient of siRNA is presented, and its capacity to regulate protein expression of encapsulated cells in a spatially continuous manner is demonstrated. Photocross-linkable dextran hydrogels containing a gradient of siRNA have been successfully fabricated using a dual-programmable syringe pump system, and differential gene silencing in incorporated cells that is sustained over time has been shown using green fluorescent protein as a reporter. This platform technology may be applied in tissue engineering to spatially control biologically relevant cellular processes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide solution, 50 wt. % in H2O
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sucrose, European Pharmacopoeia (EP) Reference Standard
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, contains no stabilizer
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
2-Hydroxyethyl methacrylate, contains ≤250 ppm monomethyl ether hydroquinone as inhibitor, 97%
Sigma-Aldrich
Tetrahydrofuran, SAJ first grade, ≥99.0%
USP
Valacyclovir Related Compound G, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Tetrahydrofuran, ACS reagent, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, ReagentPlus®, ≥99.0%, contains 250 ppm BHT as inhibitor
Valaciclovir impurity G, European Pharmacopoeia (EP) Reference Standard
Supelco
Tetrahydrofuran, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture