Skip to Content
MilliporeSigma
  • Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation.

Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation.

Nature communications (2014-12-20)
Chun Wong Aaron Chan, Abdul Hanif Mahadi, Molly Meng-Jung Li, Elena Cristina Corbos, Chiu Tang, Glenn Jones, Winson Chun Hsin Kuo, James Cookson, Christopher Michael Brown, Peter Trenton Bishop, Shik Chi Edman Tsang
ABSTRACT

Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Palladium on calcium carbonate, extent of labeling: 5 wt. % loading, poisoned with lead
Sigma-Aldrich
Palladium on calcium carbonate, extent of labeling: 5 wt. % loading, unreduced
Supelco
1-Butanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
1-Butanol, BioRenewable, ACS reagent, ≥99.4%
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Sigma-Aldrich
1-Butanol, ACS reagent, ≥99.4%
Sigma-Aldrich
1-Butanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
1-Butanol, 99.9%
Sigma-Aldrich
1-Butanol, suitable for HPLC, ≥99.7%
Supelco
Tetrahydrofuran, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, ACS reagent, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
1-Butanol, for molecular biology, ≥99%
Supelco
Tetrahydrofuran, analytical standard
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Supelco
1-Butanol, analytical standard
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Supelco
1-Butanol, suitable for HPLC, 99.8%
Sigma-Aldrich
1-Butanol, SAJ first grade, ≥99.0%
Sigma-Aldrich
1-Butanol, JIS special grade, ≥99.0%
Sigma-Aldrich
1-Butanol, suitable for HPLC
Sigma-Aldrich
Tetrahydrofuran, ReagentPlus®, ≥99.0%, contains 250 ppm BHT as inhibitor