Skip to Content
MilliporeSigma
  • An RNA binding protein promotes axonal integrity in peripheral neurons by destabilizing REST.

An RNA binding protein promotes axonal integrity in peripheral neurons by destabilizing REST.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2014-12-17)
Francesca Cargnin, Tamilla Nechiporuk, Karin Müllendorff, Deborah J Stumpo, Perry J Blackshear, Nurit Ballas, Gail Mandel
ABSTRACT

The RE1 Silencing Transcription Factor (REST) acts as a governor of the mature neuronal phenotype by repressing a large consortium of neuronal genes in non-neuronal cells. In the developing nervous system, REST is present in progenitors and downregulated at terminal differentiation to promote acquisition of mature neuronal phenotypes. Paradoxically, REST is still detected in some regions of the adult nervous system, but how REST levels are regulated, and whether REST can still repress neuronal genes, is not known. Here, we report that homeostatic levels of REST are maintained in mature peripheral neurons by a constitutive post-transcriptional mechanism. Specifically, using a three-hybrid genetic screen, we identify the RNA binding protein, ZFP36L2, associated previously only with female fertility and hematopoiesis, and show that it regulates REST mRNA stability. Dorsal root ganglia in Zfp36l2 knock-out mice, or wild-type ganglia expressing ZFP36L2 shRNA, show higher steady-state levels of Rest mRNA and protein, and extend thin and disintegrating axons. This phenotype is due, at least in part, to abnormally elevated REST levels in the ganglia because the axonal phenotype is attenuated by acute knockdown of REST in Zfp36l2 KO DRG explants. The higher REST levels result in lower levels of target genes, indicating that REST can still fine-tune gene expression through repression. Thus, REST levels are titrated in mature peripheral neurons, in part through a ZFP36L2-mediated post-transcriptional mechanism, with consequences for axonal integrity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sucrose, European Pharmacopoeia (EP) Reference Standard
Streptomycin sulfate, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Acetone, for chromatography, ≥99.8%
Sigma-Aldrich
Acetone, for residue analysis, JIS 5000
Sigma-Aldrich
Acetone, suitable for HPLC
Sigma-Aldrich
4-Nitro-3-(trifluoromethyl)phenol, 99% (GC)
Sigma-Aldrich
Acetone, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Acetone, JIS special grade, ≥99.5%
Sigma-Aldrich
Sodium chloride, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetone, for residue analysis, ≥99.5%
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Mechlorethamine hydrochloride, 98%
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
SAFC
Sodium chloride solution, 5 M
Cytarabine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Selenium, pellets, < 5mm, ≥99.999%
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Selenium, foil, 25x25mm, thickness 3mm, 99.95%