Skip to Content
MilliporeSigma
  • Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91.

Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91.

Cancer immunology research (2014-04-30)
Yu Jerry Zhou, Michelle Nicole Messmer, Robert Julian Binder
ABSTRACT

Host antitumor adaptive immune responses are generated as a result of the body's immunosurveillance mechanisms. How the antitumor immune response is initially primed remains unclear, given that soluble tumor antigens generally are quantitatively insufficient for cross-priming and tumors generally lack the classical pathogen-associated molecular patterns to activate costimulation and initiate cross-priming. We explored the interaction of the tumor-derived heat shock proteins (HSP) with their common receptor (CD91) on antigen-presenting cells (APC) as a mechanism for host-priming of T-cell-mediated antitumor immunity. Using targeted genetic disruption of the interaction between HSPs and CD91, we demonstrated that specific ablation of CD91 in APCs prevented the establishment of antitumor immunity. The antitumor immunity was also inhibited when the transfer of tumor-derived HSPs to APCs was prevented using an endogenous inhibitor of CD91. Inhibition was manifested in a reduction of cross-presentation of tumor-derived antigenic peptides in the lymph nodes, providing a molecular basis for the observed immunity associated with tumor development. Our findings demonstrate that early in tumor development, the HSP-CD91 pathway is critical for the establishment of antitumor immunity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
5(6)-Carboxyfluorescein diacetate N-succinimidyl ester, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Sigma-Aldrich
5-Carboxy-fluorescein diacetate N-succinimidyl ester, for fluorescence, ≥95.0% (HPLC)
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, meets USP testing specifications
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, powder, contains NaCl as solubilizer
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Mitomycin C from Streptomyces caespitosus, ≥98% (HPLC), potency: ≥970 μg per mg (USP XXIV), γ-irradiated, suitable for cell culture