- Pre-existing immunity to adeno-associated virus (AAV)2 limits transgene expression following intracerebral AAV2-based gene delivery in a 6-hydroxydopamine model of Parkinson's disease.
Pre-existing immunity to adeno-associated virus (AAV)2 limits transgene expression following intracerebral AAV2-based gene delivery in a 6-hydroxydopamine model of Parkinson's disease.
Adeno-associated virus (AAV) vectors are used to deliver potentially therapeutic genes in clinical trials in Parkinson's disease (PD). Pre-existing immunity to AAV and a local neuroinflammatory response might negatively affect the efficacy of such AAV-mediated gene delivery. We pre-immunized rats with wild-type AAV-2. Three months later, we created PD-like lesions by intrastriatal injections of 6-hydroxydopamine (6-OHDA) in 50% of the animals. One month later, we injected AAV2 vector expressing enhanced green fluorescent protein (eGFP) in the striatum. Using immunohistochemistry, we assessed eGFP expression, microglia activation and CD8 T cell infiltration. We also measured AAV-2 specific neutralizing antibody titers in the serum. The number of striatal cells transduced with AAV2 vector expressing eGFP was reduced by 71% in rats pre-immunized with wild-type AAV2 compared to non-immunized animals. We detected elevated numbers of OX6(+) activated microglia in the striatum and circulating AAV2-specific neutralizing antibodies in pre-immunized rats. We also observed that the intrastriatal 6-OHDA injection promoted CD8(+) T cell infiltration and enhanced microglia activation. Nevertheless, the 6-OHDA lesion did not alter AAV2-mediated expression of eGFP in either pre-immunized or non-immunized rats. Our findings indicate that intracerebral AAV2-based gene therapy is compromised in rats with pre-existing immunity to AAV2. By contrast, a local neuroinflammatory response, caused by intrastriatal a 6-OHDA injection, does not affect viral vector-mediated transgene expression. Our results emphasize the importance of monitoring circulating AAV-specific neutralizing antibodies in patients undergoing intracerebral gene therapy using AAV vectors.