Skip to Content
MilliporeSigma
  • Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

Journal of hazardous materials (2015-04-22)
Xianlai Zeng, Jinhui Li, Bingyu Shen
ABSTRACT

With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Oxalic acid, SAJ first grade, ≥97.0%
Sigma-Aldrich
Oxalic acid, purified grade, 99.999% trace metals basis
Sigma-Aldrich
Oxalic acid solution, 0.5 M
Sigma-Aldrich
Oxalic acid solution, 0.05 M
Sigma-Aldrich
Oxalic acid, puriss. p.a., anhydrous, ≥99.0% (RT)
Sigma-Aldrich
Oxalic acid, 98%
Sigma-Aldrich
Oxalic acid, ReagentPlus®, ≥99%