- Design, Synthesis, and Biological Evaluation of Novel Quinazoline Derivatives as Anti-inflammatory Agents against Lipopolysaccharide-induced Acute Lung Injury in Rats.
Design, Synthesis, and Biological Evaluation of Novel Quinazoline Derivatives as Anti-inflammatory Agents against Lipopolysaccharide-induced Acute Lung Injury in Rats.
Quinazoline has been reported to exhibit multiple bioactivities. The aim of this study was to discover new quinazoline derivatives with preventive effect on lipopolysaccharide-induced acute lung injury via anti-inflammatory actions. Thirty-three 4-amino quinazolin derivatives were synthesized and screened for anti-inflammatory activities in lipopolysaccharide-induced macrophages. The most potent four compounds, 6h, 6m, 6p, and 6q, were shown dose-dependent inhibition against lipopolysaccharide-induced TNF-α and IL-6 release. Then, the preliminary structure-activity relationship and quantitative structure-activity relationship analyses were conducted. To further determine the effects of quinazolines on acute lung injury treatment, lipopolysaccharide-induced acute lung injury model was employed. Male Sprague Dawley rats were pretreated with 6m or 6q before instillation of lipopolysaccharide. The results showed that 6m and 6q, especially 6q, obviously alleviated lung histopathological changes, inflammatory cells infiltration, and cytokines mRNA expression initiated by lipopolysaccharide. Taken together, this work suggests that 6m and 6q suppressed the lipopolysaccharide-induced acute lung injury through inhibition of the inflammatory response in vivo and in vitro, indicating that quinazolines might serve as potential agents for the treatment of acute lung injury and deserve the continuing drug development and research.