Skip to Content
MilliporeSigma
  • The highly-selective 5-HT(1A) agonist F15599 reduces L-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque.

The highly-selective 5-HT(1A) agonist F15599 reduces L-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque.

Neuropharmacology (2015-06-15)
Philippe Huot, Tom H Johnston, Susan H Fox, Adrian Newman-Tancredi, Jonathan M Brotchie
ABSTRACT

L-3,4-dihydroxyphenylalanine (L-DOPA) is the most effective anti-parkinsonian agent available, but upon chronic administration, patients with Parkinson's disease (PD) experience abnormal involuntary movements, dyskinesia. Modulation of serotonin 1A (5-HT1A) receptors is regarded as an effective way to alleviate dyskinesia, yet this approach has been marred by a reduction of the therapeutic effectiveness of L-DOPA. We hypothesised that highly-selective 5-HT1A stimulation might be a way to alleviate dyskinesia without compromising L-DOPA anti-parkinsonian action. F15599 (also known as NLX-101) is a highly-selective 5-HT1A agonist that displays over 1000 × selectivity over off-target receptors. Seven cynomolgus macaques were administered MPTP and developed severe parkinsonism. Following chronic administration of L-DOPA, they developed severe and reproducible dyskinesia. F15599 (0.003, 0.01, 0.03 and 0.1 mg/kg) or vehicle was administered in combination with L-DOPA and its effect on dyskinesia and L-DOPA anti-parkinsonian was assessed. In combination with L-DOPA, F15599 (0.1 mg/kg) reduced the severity of peak-dose dyskinesia, by ≈45% (P < 0.001), compared to L-DOPA alone. F15599 (any dose) had no effect on duration of on-time or motor activity counts compared to L-DOPA alone. F15599 at 0.03 and 0.1 mg/kg significantly reduced duration of on-time with disabling dyskinesia (by ≈49% and ≈71%, P < 0.05 and P < 0.001, respectively). These results suggest that F15599, a highly-selective 5-HT1A receptor agonist, alleviates dyskinesia without exerting a deleterious effect on L-DOPA anti-parkinsonian action.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Hydrochloric acid solution, 2 M
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
1,2,3,6-Tetrahydropyridine, 97%