Skip to Content
MilliporeSigma
  • Histone deacetylase 6 inhibition enhances oncolytic viral replication in glioma.

Histone deacetylase 6 inhibition enhances oncolytic viral replication in glioma.

The Journal of clinical investigation (2015-11-03)
Hiroshi Nakashima, Johanna K Kaufmann, Pin-Yi Wang, Tran Nguyen, Maria-Carmela Speranza, Kazue Kasai, Kazuo Okemoto, Akihiro Otsuki, Ichiro Nakano, Soledad Fernandez, William F Goins, Paola Grandi, Joseph C Glorioso, Sean Lawler, Timothy P Cripe, E Antonio Chiocca
ABSTRACT

Oncolytic viral (OV) therapy, which uses genetically engineered tumor-targeting viruses, is being increasingly used in cancer clinical trials due to the direct cytolytic effects of this treatment that appear to provoke a robust immune response against the tumor. As OVs enter tumor cells, intrinsic host defenses have the potential to hinder viral replication and spread within the tumor mass. In this report, we show that histone deacetylase 6 (HDAC6) in tumor cells appears to alter the trafficking of post-entry OVs from the nucleus toward lysosomes. In glioma cell lines and glioma-stem-like cells, HDAC6 inhibition (HDAC6i) by either pharmacologic or genetic means substantially increased replication of oncolytic herpes simplex virus type 1 (oHSV). Moreover, HDAC6i increased shuttling of post-entry oHSV to the nucleus. In addition, electron microscopic analysis revealed that post-entry oHSVs are preferentially taken up into glioma cells through the endosomal pathway rather than via fusion at the cell surface. Together, these findings illustrate a mechanism of glioma cell defense against an incoming infection by oHSV and identify possible approaches to enhance oHSV replication and subsequent lysis of tumor cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaraldehyde solution, SAJ first grade, 20.0-26.0%
SAFC
HEPES
SAFC
HEPES
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%