Skip to Content
MilliporeSigma
  • Threonine532 phosphorylation in ClC-3 channels is required for angiotensin II-induced Cl(-) current and migration in cultured vascular smooth muscle cells.

Threonine532 phosphorylation in ClC-3 channels is required for angiotensin II-induced Cl(-) current and migration in cultured vascular smooth muscle cells.

British journal of pharmacology (2015-11-13)
Ming-Ming Ma, Cai-Xia Lin, Can-Zhao Liu, Min Gao, Lu Sun, Yong-Bo Tang, Jia-Guo Zhou, Guan-Lei Wang, Yong-Yuan Guan
ABSTRACT

Angiotensin II (AngII) induces migration and growth of vascular smooth muscle cell (VSMC), which is responsible for vascular remodelling in some cardiovascular diseases. Ang II also activates a Cl(-) current, but the underlying mechanism is not clear. The A10 cell line and primary cultures of VSMC from control, ClC-3 channel null mice and WT mice made hypertensive with AngII infusions were used. Techniques employed included whole-cell patch clamp, co-immunoprecipitation, site-specific mutagenesis and Western blotting, In VSMC, AngII induced Cl(-) currents was carried by the chloride ion channel ClC-3. This current was absent in VSMC from ClC-3 channel null mice. The AngII-induced Cl(-) current involved interactions between ClC-3 channels and Rho-kinase 2 (ROCK2), shown by N- or C-terminal truncation of ClC-3 protein, ROCK2 siRNA and co-immunoprecipitation assays. Phosphorylation of ClC-3 channels at Thr(532) by ROCK2 was critical for AngII-induced Cl(-) current and VSMC migration. The ClC-3 T532D mutant (mutation of Thr(532) to aspartate), mimicking phosphorylated ClC-3 protein, significantly potentiated AngII-induced Cl(-) current and VSMC migration, while ClC-3 T532A (mutation of Thr(532) to alanine) had the opposite effects. AngII-induced cell migration was markedly decreased in VSMC from ClC-3 channel null mice that was insensitive to Y27632, an inhibitor of ROCK2. In addition, AngII-induced cerebrovascular remodelling was decreased in ClC-3 null mice, possibly by the ROCK2 pathway. ClC-3 protein phosphorylation at Thr(532) by ROCK2 is required for AngII-induced Cl(-) current and VSMC migration that are involved in AngII-induced vascular remodelling in hypertension.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human ROCK2