Skip to Content
MilliporeSigma
  • alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength.

alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength.

Neuron (2002-12-24)
Tara C Thiagarajan, Erika S Piedras-Renteria, Richard W Tsien
ABSTRACT

We show that alpha and betaCaMKII are inversely regulated by activity in hippocampal neurons in culture: the alpha/beta ratio shifts toward alpha during increased activity and beta during decreased activity. The swing in ratio is approximately 5-fold and may help tune the CaMKII holoenzyme to changing intensities of Ca(2+) signaling. The regulation of CaMKII levels uses distinguishable pathways, one responsive to NMDA receptor blockade that controls alphaCaMKII alone, the other responsive to AMPA receptor blockade and involving betaCaMKII and possibly further downstream effects of betaCaMKII on alphaCaMKII. Overexpression of alphaCaMKII or betaCaMKII resulted in opposing effects on unitary synaptic strength as well as mEPSC frequency that could account in part for activity-dependent effects observed with chronic blockade of AMPA receptors. Regulation of CaMKII subunit composition may be important for both activity-dependent synaptic homeostasis and plasticity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
CAMK2β, active, His tagged human, PRECISIO® Kinase, recombinant, expressed in baculovirus infected Sf9 cells, ≥70% (SDS-PAGE), buffered aqueous glycerol solution
Sigma-Aldrich
CAMK2α, active, GST tagged human, PRECISIO® Kinase, recombinant, expressed in baculovirus infected Sf9 cells, ≥70% (SDS-PAGE), buffered aqueous glycerol solution