Skip to Content
MilliporeSigma
  • Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium.

Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium.

International journal of antimicrobial agents (2017-02-12)
Fernanda L Paganelli, Tim van de Kamer, Ellen C Brouwer, Helen L Leavis, Neil Woodford, Marc J M Bonten, Rob J L Willems, Antoni P A Hendrickx
ABSTRACT

Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA) (1,3-polyglycerol-phosphate linked to glycolipid) in its cell wall. The small-molecule inhibitor 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] specifically blocks the activity of Staphylococcus aureus LtaS synthase, which polymerises 1,3-glycerolphosphate into LTA polymers. Here we characterised the effects of the small-molecule inhibitor 1771 on the growth of E. faecium isolates, alone (28 strains) or in combination with the antibiotics vancomycin, daptomycin, ampicillin, gentamicin or linezolid (15 strains), and on biofilm formation (16 strains). Inhibition of LTA synthesis at the surface of the cell by compound 1771 in combination with current antibiotic therapy abrogates enterococcal growth in vitro but does not affect mature E. faecium biofilms. Targeting LTA synthesis may provide new possibilities to treat MDR E. faecium infections.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Daptomycin, cyclic lipopeptide antibiotic
Sigma-Aldrich
Chondroitinase AC from Flavobacterium heparinum, recombinant, expressed in E. coli, ≥200 units/mg protein, For Chondroitin Sulfate Analysis