Skip to Content
MilliporeSigma
  • Calcium-Dependent Enhancement by Extracellular Acidity of the Cytotoxicity of Mitochondrial Inhibitors against Melanoma.

Calcium-Dependent Enhancement by Extracellular Acidity of the Cytotoxicity of Mitochondrial Inhibitors against Melanoma.

Molecular cancer therapeutics (2017-02-23)
Fumihito Noguchi, Shigeki Inui, Clare Fedele, Mark Shackleton, Satoshi Itami
ABSTRACT

Extracellular acidity is a hallmark of cancers and is independent of hypoxia. Because acidity potentiates malignant phenotypes, therapeutic strategies that enhance the targeting of oncogenic mechanisms in an acidic microenvironment should be effective. We report here that drugs which abrogate mitochondrial respiration show enhanced cytotoxicity against melanoma cells in a normoxic but acidic extracellular pH, independent from P53 mutations, BRAF (V600E) mutations, and/or resistance against BRAF inhibitors. Conversely, the cytotoxicity against melanoma cells of mitochondrial inhibitors is impaired by a neutral or alkaline extracellular pH, and in vivo systemic alkalinization with NaHCO3 enhanced subcutaneous tumor growth and lung metastasis of B16F10 cells in mice treated with the mitochondrial inhibitor phenformin. Intracellular calcium (Ca2+) was significantly increased in melanoma cells treated with mitochondrial inhibitors at an acidic extracellular pH and an intracellular Ca2+ chelator, BAPTA/AM, inhibited cytoplasmic Ca2+ as well as melanoma cell death. Surprisingly, ROS scavengers synergized with increased apoptosis in cells treated with mitochondrial inhibitors, suggesting that ROS contributes to cell survival in this context. Notably, the cytotoxic enhancement of mitochondrial inhibitors by acidity was distinct from PGC1alpha-driven mitochondrial addiction, from therapy-induced senescence, and from slow, JARID1B-high-associated cell cycling, all of which have been shown to promote vulnerability to mitochondrial inhibition. These data indicate that extracellular pH profoundly modulates the cytotoxicity of mitochondrial inhibitors against cancer cells. Mol Cancer Ther; 16(5); 936-47. ©2017 AACR.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Aurintricarboxylic acid, practical grade, ≥85% (titration), powder
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid