Skip to Content
MilliporeSigma
  • Early tyrosine phosphorylation events following adenosine A2A receptor in human neutrophils: identification of regulated pathways.

Early tyrosine phosphorylation events following adenosine A2A receptor in human neutrophils: identification of regulated pathways.

Journal of leukocyte biology (2017-02-10)
Miriam S Giambelluca, Marc Pouliot
ABSTRACT

Activation of the adenosine 2A receptor (A2AR) elevates intracellular levels of cAMP and acts as a physiologic inhibitor of inflammatory neutrophil functions. In this study, we looked into the impact of A2AR engagement on early phosphorylation events. Neutrophils were stimulated with well-characterized proinflammatory agonists in the absence or presence of an A2AR agonist {3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino] ethyl] phenyl] propanoic acid (CGS 21680)}, PGE2, or a mixture of the compounds RO 20-1724 and forskolin. As assessed by immunoblotting, several proteins were tyrosine phosphorylated; CGS 21680 markedly decreased tyrosine phosphorylation levels of 4 regions (37-45, 50-55, 60, and 70 kDa). Key signaling protein kinases-p38 MAPK, Erk-1/2, PI3K/Akt, Hck, and Syk-showed decreased phosphorylation, whereas Lyn, SHIP-1, or phosphatase and tensin homolog (PTEN) was spared. PGE2 or the intracellular cAMP-elevating combination of RO 20-1724 and forskolin mostly mimicked the effect of CGS 21680. Together, results unveil intracellular signaling pathways targeted by the A2AR, some of which might be key in modulating neutrophil functions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-p38 MAP Kinase (341-360) Rabbit pAb, liquid, Calbiochem®