Skip to Content
MilliporeSigma
  • Evaluation of free or anchored antimicrobial peptides as candidates for the prevention of orthopaedic device-related infections.

Evaluation of free or anchored antimicrobial peptides as candidates for the prevention of orthopaedic device-related infections.

Journal of peptide science : an official publication of the European Peptide Society (2017-07-15)
Francesca D'Este, Debora Oro, Gerard Boix-Lemonche, Alessandro Tossi, Barbara Skerlavaj
ABSTRACT

The prevention of implant-associated infection, one the most feared complications in orthopaedic surgery, remains a major clinical challenge and urges development of effective methods to prevent bacterial colonization of implanted devices. Alpha-helical antimicrobial peptides (AMPs) may be promising candidates in this respect due to their potent and broad-spectrum antimicrobial activity, their low tendency to elicit resistance and possible retention of efficacy in the immobilized state. The aim of this study was to evaluate the potential of five different helical AMPs, the cathelicidins BMAP-27 and BMAP-28, their (1-18) fragments and the rationally designed, artificial P19(9/G7) peptide, for the prevention of orthopaedic implant infections. Peptides were effective at micromolar concentrations against 22 Staphylococcus and Streptococcus isolates from orthopaedic infections, while only BMAP-28 and to a lesser extent BMAP-27 were active against Enterococcus faecalis. Peptides in solution showed activities comparable to those of cefazolin and linezolid, on a molar basis, and also a variable capacity to neutralize bacterial lipopolysaccharide, while devoid of adverse effects on MG-63 osteoblast cells at concentrations corresponding to the MIC. The (1-18) BMAP fragments and P19(9/G7) were selected for further examination, based on better selectivity indices, and showed effectiveness in the presence of hyaluronic acid and in synovial fluid, while human serum affected their activity to variable extents, with BMAP-27(1-18) best retaining activity. This peptide was immobilized on streptavidin-resin beads and retained activity against reference Staphylococcus epidermidis and Staphylococcus aureus strains, with negligible toxicity towards osteoblasts, underlining its potential for the development of infection-resistant biomaterials for orthopaedic application. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cefazolin sodium salt, 89.1-110.1%