Skip to Content
MilliporeSigma

Aryl amination using ligand-free Ni(II) salts and photoredox catalysis.

Science (New York, N.Y.) (2016-06-25)
Emily B Corcoran, Michael T Pirnot, Shishi Lin, Spencer D Dreher, Daniel A DiRocco, Ian W Davies, Stephen L Buchwald, David W C MacMillan
ABSTRACT

Over the past two decades, there have been major developments in transition metal-catalyzed aminations of aryl halides to form anilines, a common structure found in drug agents, natural product isolates, and fine chemicals. Many of these approaches have enabled highly efficient and selective coupling through the design of specialized ligands, which facilitate reductive elimination from a destabilized metal center. We postulated that a general and complementary method for carbon-nitrogen bond formation could be developed through the destabilization of a metal amido complex via photoredox catalysis, thus providing an alternative approach to the use of structurally complex ligand systems. Here, we report the development of a distinct mechanistic paradigm for aryl amination using ligand-free nickel(II) salts, in which facile reductive elimination from the nickel metal center is induced via a photoredox-catalyzed electron-transfer event.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-((5-Bromopyridin-2-yl)oxy)-5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)furan-2(5H)-one
Sigma-Aldrich
N-(tert-Butyl)-4′-((6-iodo-4-oxo-2-propylquinazolin-3(4H)-yl)methyl)-[1,1′-biphenyl]-2-sulfonamide
Sigma-Aldrich
tert-Butyl (S,Z)-(4-(4-bromothiophen-2-yl)-1,4-dimethyl-6-oxotetrahydropyrimidin-2(1H)-ylidene)carbamate
Sigma-Aldrich
(R)-5-((1H-1,2,3-Triazol-1-yl)methyl)-3-(3-fluoro-4-iodophenyl)oxazolidin-2-one