Skip to Content
MilliporeSigma
  • Quiescence of adult oligodendrocyte precursor cells requires thyroid hormone and hypoxia to activate Runx1.

Quiescence of adult oligodendrocyte precursor cells requires thyroid hormone and hypoxia to activate Runx1.

Scientific reports (2017-04-23)
Yasuhito Tokumoto, Shinpei Tamaki, Yasuaki Kabe, Keiyo Takubo, Makoto Suematsu
ABSTRACT

The adult mammalian central nervous system (CNS) contains a population of slowly dividing oligodendrocyte precursor cells (OPCs), i.e., adult OPCs, which supply new oligodendrocytes throughout the life of animal. While adult OPCs develop from rapidly dividing perinatal OPCs, the mechanisms underlying their quiescence remain unknown. Here, we show that perinatal rodent OPCs cultured with thyroid hormone (TH) under hypoxia become quiescent and acquire adult OPCs-like characteristics. The cyclin-dependent kinase inhibitor p15/INK4b plays crucial roles in the TH-dependent cell cycle deceleration in OPCs under hypoxia. Klf9 is a direct target of TH-dependent signaling. Under hypoxic conditions, hypoxia-inducible factors mediates runt-related transcription factor 1 activity to induce G1 arrest in OPCs through enhancing TH-dependent p15/INK4b expression. As adult OPCs display phenotypes of adult somatic stem cells in the CNS, the current results shed light on environmental requirements for the quiescence of adult somatic stem cells during their development from actively proliferating stem/progenitor cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Glial Fibrillary Acidic Protein antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-Myelin Basic Protein Antibody, a.a. 82-87, culture supernatant, clone 12, Chemicon®
Sigma-Aldrich
Anti-Ki-67 Antibody, Chemicon®, from rabbit