Skip to Content
MilliporeSigma
All Photos(3)

Documents

162957

Sigma-Aldrich

6-Hydroxydopamine hydrobromide

95%

Synonym(s):

2,4,5-Trihydroxyphenethylamine hydrobromide, 2,5-Dihydroxytyramine hydrobromide, 2-(2,4,5-Trihydroxyphenyl)ethylamine hydrobromide, 6-OHDA

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(HO)3C6H2CH2CH2NH2 · HBr
CAS Number:
Molecular Weight:
250.09
Beilstein/REAXYS Number:
3713280
EC Number:
MDL number:
UNSPSC Code:
12352116
PubChem Substance ID:
NACRES:
NA.77

Quality Level

assay

95%

form

powder

mp

216-220 °C (lit.)

storage temp.

−20°C

SMILES string

Br.NCCc1cc(O)c(O)cc1O

InChI

1S/C8H11NO3.BrH/c9-2-1-5-3-7(11)8(12)4-6(5)10;/h3-4,10-12H,1-2,9H2;1H

InChI key

MLACDGUOKDOLGC-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Solutions should be freshly prepared and protected from exposure to light.

Application

6-Hydroxydopamine hydrobromide has been used:
  • to induce Parkinson′s disease (PD) in mouse models to study the effects of tubastatin A (TBA) on nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) activation and cell injury in SH-SY5Y cells
  • to induce pharmacological ablation of the sympathetic nerves to study the effect of hepatic sympathetic nerve activity (SNA) on hepatic steatosis during diet-induced obesity in mice
  • to induce oxidative stress in mesencephalic cells to study its effect on p75NTR signaling in neuronal cells of the ventral mesencephalon

Biochem/physiol Actions

6-Hydroxydopamine hydrobromide (6-OHDA) is a neurotoxin that elicits oxidative damage and destroys catecholaminergic or sympathetic terminals. It is commonly used to induce Parkinson′s disease in the experimental model. 6-OHDA exerts cytotoxicity by generating reactive oxygen species, initiating cellular stress and cell death.

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

ppe

dust mask type N95 (US), Eyeshields, Gloves


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 2

1 of 2

MPTP Hydrochloride

Sigma-Aldrich

5.06382

MPTP Hydrochloride

Woori Kim et al.
Neurobiology of aging, 35(7), 1712-1721 (2014-02-25)
Dopamine (DA) neurons in sporadic Parkinson's disease (PD) display dysregulated gene expression networks and signaling pathways that are implicated in PD pathogenesis. Micro (mi)RNAs are regulators of gene expression, which could be involved in neurodegenerative diseases. We determined the miRNA
Yun-Qi Xu et al.
CNS neuroscience & therapeutics, 19(3), 170-177 (2013-01-03)
In addition to their original applications for lowering cholesterol, statins display multiple neuroprotective effects. Inflammatory reactions and the PI3K/AKT/caspase 3 pathway are strongly implicated in dopaminergic neuronal death in Parkinson's disease (PD). This study aims to investigate how simvastatin affects
Julio C Tobón-Velasco et al.
Toxicology, 304, 109-119 (2013-01-01)
6-Hydroxydopamine (6-OHDA) is a neurotoxin that generates an experimental model of Parkinson's disease in rodents and is commonly employed to induce a lesion in dopaminergic pathways. The characterization of those molecular mechanisms linked to 6-OHDA-induced early toxicity is needed to
C C Real et al.
Neuroscience, 237, 118-129 (2013-02-12)
Physical exercise is known to produce beneficial effects to the nervous system. In most cases, brain-derived neurotrophic factor (BDNF) is involved in such effects. However, little is known on the role of BDNF in exercise-related effects on Parkinson's disease (PD).
Ilse S Pienaar et al.
Experimental neurology, 248, 213-223 (2013-06-19)
The pedunculopontine nucleus (PPN) controls various physiological functions, whilst being deemed a suitable target for low-frequency stimulation therapy for alleviating aspects of Parkinson's disease (PD). Previous studies showed that the PPN contains mainly cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic neurons.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service